Electromagnetic Waves :
In the absence of any source of charge or current, Maxwaeljigagons in free
space are as follows :
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The last two equations couple the electric and the magnetigsfi If B is time
dependentV x E is non-zero. This implies that is afunctlon of posmon Fur-
ther, if 9B /ot itself changes with time, so dods x E. In such a casé also
varies with time since th& operator cannot cause time variation. Thus, in gen-
eral, a time varying magnetic field gives rise to an electatdfivhich varies both
in space and time. It will be seen that these coupled fieldsgwate in space.
We will first examine whether the equations lead to transveraves. For sim-
plicity, assume that the electric field has only x-comporagrat the magnetic field
only y-component. Note that we are only making an assumpégarding their
directions — the fields could still depend on all the spacedioatesz, y, z, in
addition to timef.

Gauss’s law gives
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ThuskE, is independent of coordinate and can be written &5(y, z, ¢). A similar
analysis shows thdt, is independent of coordinate and can be written explicitly
asBy(z, z,1).
Consider now the time dependent equations eqns. (3) and¥)curl equation
for B gives, taking z-component
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SinceB, = 0, this gives .
Yy _
or 0
showing thatB, is independent of and hence depends only enandt¢. In a
similar manner we can show that, also depends only onandt. Thus the fields
E and B do not vary in the plane containing them. Their only variattakes
place along the z-axis which is perpendicular to bbtand B. The direction of

propagation is thus—direction.
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To see that propagation is really a wave disturbance, takenyponent of Eqn.
(3) and x-component of Eqn. (4)
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To get the wave equation fdr,, take the derivative of eqn. (5) with respect:to
and substitute in eqgn. (6) and interchange the space andlgématives,
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Similarly, we can show, We get
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Each of the above equations represents a wave disturbaopagating in the z-

direction with a speed
1

\ Ho€o

On substituting numerical values, the speed of electromi@gwaves in vacuum
is 3 x 10® m/sec.

Consider plane harmonic waves of angular frequeneyd wavlength\ = 27 /k.
We can express the waves as

CcC =

E, = Epsin(kz — wt)
B, = DBysin(kz — wt)

The amplitudedy, an B, are not independent as they must satisfy egns. (5) and

(6) :

E
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% = —Bwcos(kz — wt)

Using Egn. (5) we get
E()]{? = B()w

The ratio of the electric field amplitude to the magnetic fiaidplitude is given
by

By k
FieldsE andB are in phase, reaching their maximum and minimum valueseat th
same time. The electric field oscillates in the x-z plane &ednagnetic field os-
cillates in the y-z plane. This corresponds tpaharized wave. Conventionally,
the plane in which the electric field oscillates is definedhas filane of polar-
ization. In this case it is X-z plane. The figure shows a haimplane wave
propagating in the z-direction. Note that B and the direction of propagatldn
form a right handed triad.
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Example:

The electric field of a plane electromagnetic wave in vacusifiy,i= 0.5 cos[27 X
108(t — x/c)] VIm, E, = E, = 0. Determine the state of polarization and the
direction of propagation of the wave. Determine the magrfegid.

Solution :

Comparing with the standard form for a harmonic wave

w = 27 x 10® rad/s
E = 2mx10%/c

so thatA = ¢/10® = 3 m. the direction of propagation is x-direction. Since
the electric field oscillates in x-y plane, this is the plarigolarization. Since
B must be perpendicular to both the electric field directiod #re direction of
propagation,B has only z-component with an amplitudiy = Ey/c ~ 1.66 x
1072 T. Thus

B, =1.66 x 1077 cos[27 x 10°(t — x/c)] T

Exercise:
The magnetic field of a plane electromagnetic wave is given by

2
B,=B,=10"" sin[%x o x 10%] T

Determine the electric field and the plane of polarization. Ang. Strength of
electric field is3v/2 V/m)
Plane, Circular and Elliptic Polarization :
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We have shown that and?5 lies in a plane perpendicular to the direction of prop-
agation, viz., the plane of polarization. This does not yrpht the direction of
these fields are constant in time. If it so happens that theessose directions of
E (and henceB) remains parallel, the electric vectors at different psintspace
along the direction of propagation at a given time will lieeiplane. (Equivalently,
the directions of electric vectors at a given point in spaasféerent times will be
parallel). Such a situation is callecobane polarized wave.
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A plane polarized wave propagating in z-direction can belesd by an electric
field given by

—

E =, sinwth = Eysinwt cos 0i + Fj sin wt sin 9}'

We know that because of linearity of the wave equation, amgai combination
of two solutions of the wave equation is also a solution of wave equation.
This allows us to construc new states of polarization of feeteomagnetic wave
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from the plane polarized wave. Suppose we have two planeipatbwaves of
equal amplitude one with the electric vector parallel to xhdirection and the
other parallel to y-direction, the two waves having a phaierénce ofr/2. The

resultant, which is also a solution of the wave equation, has

E, = Eysinwt

E, = Eycoswt
The tip of the resultant electric vectdr describes a circle of radius,, which
is independent of. The state of polarization is known ascular polarization.
Looking along the direction of propagation if the radius te&és moving clock-

wise, the polarization is calledght circularly polarized and if anticlokwise it is
called left circularly polarized.
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wi=11/2

Right Circularly polarized Left Circularly polarized

In the same way if the two plane polarized solutions have a@bdference ofr/2
but have different amplitudesandb, they produce what is known as elliptically
polarized light. In this case, we have

E, = asinwt

E, = bcoswt

so that the equation to the trajectory is given by

2
BB
a? b2
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Wave Equation in Three Dimensions::
We can obtain the wave equation in three dimensions by ugjng.e(1) to (4).
On taking the curl of both sides of eqn. (3), we get

; )

Vx(ﬁxﬁ):—a(ﬁxé)

Using the operator identity
Vx(VxE)=V(V-E)-V*E=-V’E
wherein we have use¥ - £ = 0, and substituting eqn. (4) we get

2o o O2E
2
V°E = ,uoeo—atQ

A three dimensional harmonic wave has the foim(% - 7 — wt) or cos(k - 7 —
wt) Instead of using the trigonometric form, it is convenienute the complex
exponential form

F(7 1) = exp(ik - 7 — wt)
and later take the real or imaginary part of the function &sdfise may be. The
derivative of (7, ¢) is given as follows :

0

e (7 t) = g exp(ik,x + ikyy + ik, z — iwt) = ik, f(7, 1)
x x

0
7



Since

we have,

In a similar way,
O ..
&f(ra t) - —ZCL)]C(T, t)

Thus for our purpose, the differential operat&fsandd/ot may be equivalently
replaced by

Q —w
ot
V — ik

Using these, the Maxwell’s equations in free space become

k-E = 0 (7)
k-B = 0 (8)
kx B —,uoeoﬁ (9)
kxE = B (10)

We can see that, B andk form a mutually orthogonal triad. The electric field
and the magnetic field are perpendicular to each other arydatieeboth perpen-
dicular to the direction of propagation.

Generation of Electromagnetic Waves:

We have looked for solutions to Maxwell's equations in fr@gace which does
not have any charge or current source. In the presence ofesuhe solutions
become complicated. |§ = constant, i.e. it/ = 0, we only have a steady elec-
tric field. If p varies uniformly with time, we have steady currents whichegi
us both a steady electric field as well as a magnetic field. rig|eame varying
electric and magnetic fields may be generated if the curramnes with time, i.e.,
if the charges accelerate. Hertz confirmed the existenckeofremagnetic waves
in 1888 using these principles. A schematic diagram of Feest up is shown in
the figure.
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The radiation will be appreciable only if the amplitude otiiation of charge is
comparable to the wavelength of radiation that it emits.sTriales out mechan-
ical vibration, for assuming a vibrational frequency of 00€ycles per second,
the wavelength work out to be 300 km. Hertz, therefore, m&eeascillating
charges vibrate with a very high frequency. The apparatuasists of two brass
plates connected to the terminals of a secondary of a transfo The primary
consists of an LC oscillator circuit, which establishesrgkaoscillations at a fre-
quency ofw = 1/+/LC. As the primary circuit oscillates, oscillations are set up
in the secondary circuit. As a result, rapidly varying atiting potential differ-
ence is developed across the gap and electromagnetic wavgsrserated. Hertz
was able to produce waves having wavelength of 6m. It was sealized that
irrespective of their wavelength, all electromagnetic asatravel through empty
space with the same speed, viz., the speed of light.



Depending on their wavelength range, electromagnetic svave given different
names. The figure shows the electromagnetic spectrum. Wkabivn as visible
light is the narrow band of wavelength from 400 nm (blue) t® Ton (red). To
its either side are the infrared from 700 nm to 0.3 mm and ttrawiblet from 30
nm to 400 nm. Microwaves have longer wavelength than thaieé (0.3 mm to
300 mm) and the radio waves have wavelengths longer than 8@0Trhe televi-
sion broadcast takes place in a small range at the end of trewave spectrum.
Those with wavelengths shorter than ultraviolet are gdlyetalled rays. Promi-
nent among them are x-rays with wavelengths 0.03 nm t0 30 rdnaays with
wavelengths shorter than 0.03 nm.

Poynting Vector :
Electromagnetic waves, like any other wave, can transpuetgy. The power
through a unit area in a direction normal to the area is giweRdynting vector,
given by

— 1 — —

S=—FEXxB

Ho

As E, B and form a right handed triad, the direction sfis along the direction
of propagation. In Sl units' ismeasured in watt/fn
The magnitude of for the electromagnetic wave travelling in vacuum is given
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by
EB  E?
S = — = —
Ho Clo
where we have used the relationship betwfeandB in free space. For harmonic

waves, we have
2

E
S = %L sin?(kx — wt)
Clo

The average power transmitted per unit area, defined asitbasity is given by
substituting the value 1/2 for the average of the squarenaf g cosine function
I= &
2¢pio

Example:

Earth receives 1300 watts per squar meter of solar energyn@sg the energy
to be in the form of plane electromagnetic waves, computertagnitude of the
electric and magnetic vectors in the sunlight.

Solution :

From the expression for the average Poynting vector

Eg
2¢pio

= 1300

which givesE, = 989 V/m. The corresponding rms value is obtained by dividing
by 2, E,,s = 700 V/Im. The magnetic field strength iB,,,, = E,.n./c =
2.33x 1079 T.

Exercise:
A 40 watt lamp radiates all its energy isotropically. Congotlte electric field at
a distance of 2m from the lamp. (Ans. 30 V peak)

Radiation Pressure:
We have seen that electric field, as well as magnetic fielde staergy. The
energy density for the electric field was seen to(bg2)ey E* and that for the
magnetic field was found to b@ /2)B?/2u,. For the electromagnetic waves,
whereE /B = ¢, the total energy density is

1 B?

u = —EOE2 + — = €0E2

2 2410
where we have used = 1/ ¢.
In addition to carrying energy, electromagnetic wavesycaromentum as well.
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The relationship between energy/)(and momentumy is given by relatistic
relation for a massless photons @ms= U/c. Since the energy density of the
electromagnetic waves is given ByE?, the momentum density, i.e. momentum

per unit volume is

oz L
O ¢ |ExB|

|p|=

Since the direction of momentum must be along the directigorepagation of
the wave, the above can be converted to a vector equation

ﬁ:€0EX§

If an electromagnetic wave strikes a surface, it will thusréa pressure. Consider
the case of a beam falling normally on a surface of at@ehich absorbs the wave.
The force exerted on the surface is equal to the rate of chaingementum of the
wave. The momentum change per unit time is given by the mamenbntained
within a volumecA. The pressure, obtained by dividing the force by A is thus
given by

P = c¢p = cegEB = ¢y E?

which is exactly equal to the energy density

If on the other hand, the surface reflects the wave, the presgwld be twice the
above value.

The above is true for waves at normal incidence. If the raahas diffuse, i.e., ifit
strikes the wall from all directions, it essentially cortsisf plane waves travelling
in all directions. If the radiation is isotropic, the intéysof the wave is the
same in all directions. The contribution to the pressuree&®fmom those waves
which are travelling in a direction which has a componenbglthe normal to the
surface. Thus on an average a third of the radiation is resplenfor pressure.
The pressure for an absorbing surface i8 while that for a reflecting surface is
2u/3.

The existence of radiaton pressure can be verified expetathgnThe curvature
of a comet’s tail is attributed to the radiation pressurerieon the comet by
solar radiation.

Exercise:
Assuming that the earth absorbs all the radiation that ives from the sun,
calculate he radiation pressure exerted on the earth by rsaltion. (Ans.

Assuming diffuse radiatioi.33 x 1075 N/m?)
Wave Propagation in Matter :
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Inside matter but in region where there are no sources, theast equations are

V-D = 0
V-B =
-, 0B
E = -
V X 5
- oD
H = ==
V X 5

which results in a travelling wave with speed= 1/, /e where B = ,uﬁ and
D=eH.

Wavesin a conducting Medium :

If the medium is conducting, we need to include the effect tlueonduction
current. The two curl equations become

» 0B OH
VxE = — " = >~
x o~ Mo
. oD - OE ,
H = == — e~ 1 oF
V x at—i—J eat+a

where we have used Ohm'’s law as another constitutive ralalibus, we have,
. o .
Vx(VxE):—,u&(VxH)
Using the expansion fov x (V x E) = V(V - E) — V2E, we get

1 - ) = OPE OF
It may be noted that thougtt - D term equalyy, free charges, if they exist in a
conductor soon depletes. This may be seen from the equdttmmbtnuity. Using

o _
ot
and using Ohm’s law one can see that if at tile 0 there exists some free charge

p‘}, the charge drops exponentially to 1/e th of its value aftiéme ¢ /o which is
very small for conductors. Thus the wave equation that we lnav

v-J

. O*E OF
20
V E—,ueat2 +,uaat
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and a similar equation fold, i.e.

O2H ot

o M

In practice, most generators produce voltages and cunndnth vary sinusoidally.
Corresponding electric and magnetic fields also vary sinaadly with time. This

impliesOF /0t — —iwE andd*E/ot* — —wE. The wave equation becomes

V2H = L€

V2E = —uerE +ipowE = ~v*F

where
2

v = —pew? +ipow

is a complex constant. We may write= « + i3, squaring and equating it to the
expression for?, we can see that and3 have the same sign. When we take the
square root ofy? and write it asy we assume that and3 are positive. One can
explicitly show that

We have seen that in Maxwell’s equatiert; is conduction current density while
the termiweE is the displacement current density. This suggest thatahes\of
the ratioo /we is a good measure to divide whether a material is a dieleotra
metal. For good conductors this ratio is much larger thandr give entire radio
frequency spectrum. For instance, at a frequency as high,8808 MHz, Cu has
o /we ~ 108 while for the same frequency this ratio is 0.0002 for mica.

For good conductors, we take/'we > 1. We have, in this limit

wo i
o = = e
2

The velocity of the wave in the conductor is

2w

w
V==
B po
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The wave is greatly attenuated inside a condud@epth of penetration or skin
depth ¢ is defined as the distance at which an eletromagnetic wavédvwave
attenuated to 1/e of its value on the surface.

5:—: _
o wpo

For conductors like copper this distance is typically ldsmta fraction of a mil-
limeter.
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